(both carts) p_T (

Student's Name:		Student's Name:			
Lab day & time:		Date:			
Impulse	and Momentur	n (M5) - Data	Sheets		
Activity 1: Inelastic Co	ollision		(1 p.)		
First, make sure tha	t the track is properly le	veled.			
Mass of dynamics (plunger) cart $m_d =$	()		
Mass of collision ca	art $m_{\mathcal{C}} =$	()			
Total mass = $m_d + m_d$	$m_{\mathcal{C}} =$	_()			
Print a copy of the	velocity vs. time graph.				
	Before Collision	Before Collision	After Collision		
	Dynamics Cart	Collision Cart	Both Carts		
Velocity 1 ()					
Velocity 2 ()					
Velocity 3 ()					
Velocity 4 ()					
Velocity 5 ()					
Average Velocity v ()				
Momentum p ()					
Total Momentum					

<u>Find the selected data points</u> on the printout and <u>clearly mark</u> these points with a pen (for example, circle them).

The percentage of the momentum change (absolute value):

)

 $|100\%*(p_T after - p_T before) / p_T before| = ____(\%)$

Activity 2: Simulated Explosion

Mass of dynamics (plunger) cart $m_d =$ () (see Activity 1)

Mass of collision cart $m_c =$ () (see Activity 1)

	Before Explosion	Before Explosion	After Explosion	After Explosion
	Dynamics Cart	Collision Cart	Dynamics Cart	Collision Cart
Velocity 1 ()				
Velocity 2 ()				
Velocity 3 ()				
Velocity 4 ()				
Velocity 5 ()				
Average Velocity ()				
Momentum p ()				
Total Momentum (both carts) p _T ()				

What value of the total momentum would you expect after the "explosion"?

Are there any <u>external</u> forces acting along in the horizontal direction of the track?

YES / NO _____

After explosion, both carts move with some velocity. Therefore, both have kinetic energy. What is the source of that kinetic energy?

(1 p.)

Activity 3: Elastic Collision

Mass of dynamics (plunger) cart $m_d =$ () (see Activity 1)

Mass of collision cart $m_c =$ ____() (see Activity 1)

<u>Release the plunger</u> from its locked position by pushing on the small tab located at the top of the bumper on the dynamics cart. Record data and **print** a copy of the velocity vs. time graph.

	Before Collision	Before Collision	After Collision	After Collision
	Dynamics Cart	Collision Cart	Dynamics Cart	Collision Cart
Velocity 1 ()				
Velocity 2 ()				
Velocity 3 ()				
Velocity 4 ()				
Velocity 5 ()				
Average Velocity ()				
Momentum p ()				
Total Momentum (both carts) p_T ()				

<u>Find the selected data points</u> on the printout and <u>clearly mark</u> these points with a pen (for example, circle them).

The percentage of the momentum change (absolute value):

 $|100\%*(p_T after - p_T before) / p_T before | = _____(\%)$

(0.5 p.)

Activity 4: Soft Collision and Impulse

Mass of the "Force Sensor" (model CI-6537) = 0.333 kg or 0.085 kg if you are using the "Economy Force Sensor" (model CI-6746).

Mass of the collision cart with the attached force sensor:

 $m_{coll.\ cart\ with\ the\ force\ sensor} =$ ()

		Before Collision	After Collision
Velocity ()		
Momentum ()		

Change of momentum during the collision (= impulse):

 $|\mathbf{p}_{change}| = |\mathbf{p}_{after} - \mathbf{p}_{before}| =$ ()

Width of the force vs. time peak (i.e., how long does the collision last?)

 $\Delta t = _ (ms)$

<u>Maximum</u> force (max. of the force vs. time graph) = _____ ()

What was the <u>maximum</u> value of acceleration experienced by the collision cart? How many times this is larger than the acceleration due to gravity? *Hint:* $F = m_{coll, cart with the force sensor} *a$

 $a = _ (m/s^2)$ $a/g = _$

Activity 5: Hard Collision

Proceed in a similar way as for *Activity* 4, but this time use a <u>small rubber bumper</u> instead of the spring. **Print** the force vs. time graph.

Width of the force vs. time peak (i.e., how long does the collision last?)

 $\Delta t = _ (ms)$

<u>Maximum</u> force (max. of the force vs. time graph) = ____ ()

(0.5 p.)

Experiment M5

What was the <u>maximum</u> value of acceleration experienced by the collision cart? How many times this is larger than the acceleration due to gravity? *Hint:* $F = m_{coll. cart with the force sensor} *a$

 $a = _ (m/s^2)$ $a/g = _$

Describe the difference between soft and hard collisions.

Using the small screwdriver, **unscrew** the force probe from the top of the collision cart.

Remove the rubber bumper from the front of the force sensor and attach the **spring** to the force sensor.

Complete the lab report and return it to the lab TA.